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1. Introduction. In a classic paper in 1856 Dirichlet gave some applications of a 
formula for the ratio of the class number of a quadratic integral domain in a real 
field to the class number of the whole integral domain (of all quadratic integers in 
that field), with the principal objective of showing that this ratio takes many 
values (such as 1) infinitely often for the real case, in support of a conjecture of 
Gauss. 

The object of this paper is first of all to give Dirichlet's results briefly, together 
with some theorems and illustrations immediately deducible from them (in order 
to restrict the computation to cases in which the theory is of more help). We shall, 
of course, offer various tables of relative class numbers, such data being our main 
object. We emphasize quadratic integral domains of prime power conductor under 
the whole integral domain (of all quadratic integers of the field). 

We ask, in particular, when the relative class number is divisible by 2 and 4, and 
find simple linear congruence conditions. When we ask which prime conductors 
have relative class numbers divisible by 3, we find such primes are essentially the 
splitting primes of certain cubic fields and therefore representable by quadratic 
forms, according to the classic work of Dedekind [3]. This is basically an application 
of class-field theory and perhaps the tables emerging would be of some experimental 
use. The classic background is amplified in [7], [5], and [2]. 

Here it might be appropriate to remark that the tables given below have a 
"natural" limit of diminishing returns owing to the fact that the relevant portions 
of classical algebraic number theory were developed long ago with relatively little 
data, and it would be desirable to see the theory profit from more data before 
great feats of computer endurance are attempted. 

2. Notation and Terminology. We follow the convention that Latin letters 
generally denote rational integers and Greek letters denote algebraic integers. The 
following symbols and terms appear throughout the work: 

m is a square-free integer > 1. 
R(ml12) is the field generated by ml/2. 
d is the discriminant of the field generated by M112; d = m if m-- 1 

(mod 4), d = 4m if m E 1 (mod 4). 
c is the indicator of the type of field, c = 2 if m-n 1 (mod 4), c = 1 

if m E 1 (mod 4). Thus d = 4n/c2. 
is the set of all algebraic integers of R(Mln2). It consists of co - 

(x + yM1/2) /c for which x and y are rational integers subject 
only to the condition x y (mod c). 
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F(w) is the function defined by y = F(w) in the above definition. 
SDf is an arbitrary integral domain (ring with unity) in R(m/2), given 

uniquely for any integer f > 0. It consists of the subset of alge- 
braic integers X in Z for which f I F(co). Here f is called the 
conductor. It is the index of Zf in Z0, and Z, = Z. 

f2d is the ring-discriminant of Zf . Its purpose is that any given D( > 1) 
which is- 0 or 1 (mod 4) can be written uniquely as f2d for some 
f and d. Thus f2d completely determines R(m112) and Zf in R(ml2). 

h(f2d) is the class number (of ideals prime to f) in O,f . 
11(f) is the relative class number = h(f2d)/h(d), (used when the value 

of d, or the field, is understood in context). 
e is the fundamental unit, written e = (a + bmin2) /c. Here a > 0, 

b > 0 and a _ b (mod c). 
e is the norm of the fundamental unit, actually 141, N(e) = e = 

(a2 _ mb2)/C2 

*k, nthP--,jIu41f fX.lt - (4),k),extended over primes qwhich divide 
f. Here (d/q) is the Kronecker residue symbol, (thus (d/2) = 

(2/d)). 
+(f) is the minimum exponent t (>1) for which et cf or for which 

f I F(ft). It cani be shown directly that +(f) I At(f). By classical 
methods of primitive root theory, if f I F(e), then +(f) I u. 

Other symbols appear only locally and can best be defined as they arise. 

3. Dirichlet's Theorems. The starting point is the following theorem, in prin- 
ciple due to Gauss: For a given field R(ml/2), (with m > 0), 

(3.1) H(f) = A(f)/+(f). 

If m < 0, the formula is modified so that, for instance, with f > 1, +(f) is replaced 
by half the number of units in Z. (We do not need the modified formula for the 
machine part of the calculation, but for supporting computations in Section 7). 

Now A1(f) is fairly easy to find, but the calculation of ?(f) is the part requiring 
the electronic computer. Dirichlet [4] showed, however, that if f = p,F' p. PF 

where the primes pi come from a given finite set, then the values of H(f) also come 
from a finite set as the exponents Fi vary; in fact H(f) = Ho, a constant if each 
Fl is sufficiently large. An examination of Dirichlet's method leads to the rule that 
if pi is odd and fo is such that H(fo) = H(fopi) (while if one pi = 2, fo satisfies 
H (fo) = H(4fo) ), then H(f) = H(f0) if fo I f, (recalling the prime divisors of f 
are to be limited to the pi). 

From general principles it also follows that if f I g, then H(f) I H(g). 
The main step in understanding these results is to colnsider anyf which contains 

all the odd primes pi (and possibly 22) as divisors. Then f I F( E(f), i.e., E (f= = 

(Xf + ym/2 ) /c, where f I yf . But, let f* be the factor of yf consisting of powers of 
the pi.. (Thus f If* while (yf/f*, f) - 1.) Then for pi odd, F( (f)pi) = pif*g, 
where (g, f)=1, as we prove by using the binomial theorem, (in a manner reminis- 
cent of the proof that a primitive root modulo p2 is a primitive root modulo pf, 
n > 2). For pi even, special attention must be given the denominator c = 2, but 
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this can be left to the reader, as well as the completion of the proof of the above 
results by induction. 

If we restrictf to powers of a prime p then we find H(pn+') = H(p') or pH(Ip") 
(n > 1), but eventually H(p'+') = H(p') then H(pm) = H(p') for all m ? n 
when p is odd, wvhile for p = 2, H(2 n+) = H(2') or 2H(2'), (n > 1), but even- 
tually H(2n+2) = H(2n) where H(2m) = H(2') for all n > mn. 

4. Simple Cases. We first consider those q which divide 6 mb. In these cases the 
values of H(qt) are easily seen by elementary hand calculations, and we often omit 
these from the tables to make room for more interesting values. 

f = 2 F 

(1 if f= 1, 

Define M(a, b,f) = min (2B,f) if 2A = 1 f > 2, 

min (2A,f/2) if 2A > 1, f > 2, 

where 2A I a, i.e., 2A I a but 2A+1 + a, and likewise 2B 11 b. Then if d 0 (mod 4), 

(4.1) H(f) = M(a, b, f), 

while if d 1 (mod 4) and 21 ab, 

(4.2) H(f) = [2 + (d/2) ]M (a/2, b/2, f/2), 

and if d 1 (mod 4) and 2 f ab (whence d 5 (mod 8)), 

(4.3) H(f) = M( [a2 - 3e]/2, [a2 - e]/2, fj2). 

(Note that ([a + bm1'2]/2)3 = a[a2 - 3e]/2 + b[a2 - e]m"'2/2). 

f = 3 F 

Let 3B 11 b, 3A 11 a. If 3 1 m, let 3G 11 3a2 + mb2, then 

1 min (f, 3G) if 3B= 1 
(4.4) H(f) = lmin (f, 3 B) if 3B > 1. 

If, however, 3 m, let 3T7 a2 + b2m, then 

r3min (f, 3T) if 3 2 ab, 

(4.5) H(f) - ?2[1- (d/3)/3] min (f, 3A) if 3 Ia, 

I- (d/3)/3] mim (f, 3B) if 3 lb. 

(Note that f = 3F iS "special" because of consideration of 3G. Compare f =q 

below). 

f = qF 

Here let q be a prime P2, 3 for which q mnb, and let qB 11 b. Then 

(4.6) H(f) = min (f, qB)* 

Thus in many cases where q I m and q { 6b, then H(qn) = 1 for all n, giving the 
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easiest illustration of Dirichlet's original objective; e.g., for m = d 5, H(5n) = 1 
for all n > 0. 

5. The Program. The basic sub-routine considers the input 

(5.1) m, a, b,f 

from which +(f), Av(f), and H(f) are calculated. The machine forms by induction 
t = [a(t) + b(t)m12 I/c stored as a(t),, b(t) calculated modulo f2. Then letting 

t = 1, 2, the machine records the earliest t[= +(f)] for which b(t) 0 (mod f). 
The machine next calculates +k(f) by examining the, prime factors q of f sequen- 
tially. The machine finds (d/q) for q + 2d by actually testing the solvability in 
x of X2 d (mod q), while for q I 2d, (d/q) is determined directly from the rules. 
Finally, H(f) = A4(f)1/+(f). The output for each input consists of 

(5.2) f, H((f) 'I'(f), b(4(f))/f (mod f). 
The last value is desired for purposes of testing F(eo'f)). For example, if 

(b(o(f))/f,f) 1, 

then f is a suitable fo for Section 3. 
The basic sub-routine was used in several ways. 
In one run the basic sub-routine was set up to increment f by 1 automatically 

over a range fi ? f _ f2 where f, and f2 are given in addition to the initial data. 
For m = 5 the problem was run up tof = 4400 and for m = 2 and 3, it was run up 
to f = 1000. 

In another variation, the values of f were incremented as before but were re- 
stricted to primes in the preassigned range. (We always use the letter p to denote 
a prime.) These main runs were made for f = 'p an odd prime up to 997 for $8 
values of m, namely 

(5.2) Series A: 2 ? square free mn 1 (mod 4) ? 42 

(5.3) Series B: 5 _ square free m - 1 (mod 4) _ 97. 

The problem was programmed for the GEORGE computer with only approxi- 
mately 500 words of a 4096-word high-speed memory involved. The machine is 
internally binary with 40-bit word length and approximate speed of 50,000 two- 
address operations per second. 

In all the runs, the output consisted of the input data (5.1) (as a heading) fol- 
lowed by the output data (5.2) listed "on-line" (parallel) with the computation. 
The input and output were in decimal (internally converted) and on paper tape 
originally (but the output was later transformed to magnetic tape just to speed up 
the printing process from flexowriter to line printer). The actual input and output 
times were negligible. 

The running time for each case was about f/S0 seconds. The calculations were 
run between December 1960 and May 1961. 

6. Use of Some Cyclic Groups. Let m be given and let p 4 2m be an arbitrary 
given prime. Define a group in which the elements at are the following sets: 

(6.1) at = {x + ym1/2}, where x = ty and N(x + yM1/2) * 0 (mod p), 



RELATIVE CLASS NUMBERS OF REAL QUADRATIC INTEGRAL DOMAINS 131 

and 

(6.2) a0a= {x}, where x X 0. 

The group operation is multiplication (mod p), easily shown to be independent of 
the representative. When (m/p) = -1, there are p + 1 of these elements, while 
when (m/p) = +1 there are p - 1 of these elements (by excluding two values of 
t for which tj m (mod p)). In general, we have a group W, with p - 

(m/p) = /(p) elements, and with a,0 as the unit element. 
We see that the group 5I, is cyclic. This is true where (m/p) = -1 since the 

group is a sub-group of the cyclic group of reduced residues of algebraic integers 
modulo p, (now an ideal prime). When (m/p) = -1 we rewrite At = a[u] where 

(6.3) a[u] = {x(r(1 + u) + n"l12(1 -u))1. 

Here r satisfies r2 = m (mod p) and t and u are related by t = r(1 + u)/(1 - u) 
(mod p). We can verify a[u]a[v] = a[uv], hence when (mn/p) = 1, Sp is isomorphic 
to the multiplicative (cyclic) residue group of rational integers modulo p. 

The importanit result for us is the following: if p -, 2m and if r is a given initeger 
dividing p - (m/p) a necessary and sufficient condition that r I H(p) is that 
cE belong to ani at which is an r-th power in Sp . This result follows from the cyclic 
struieture of 9p once we note that (cE)O(') z (mod p) for z an integer, hence 
(CE)('P) belongs to a. the unit element, while +(p) is the order of the group. 

For illustration, we start with r = 2, and take p + 2mb. Set 

a + bi1 = (x + yn' )Jk, or, 

J4a = (x2 + y2mn) 
(6.4) = 2xy 

tb 2kxy. 

This system is solvable, for k X 0, if and only if the equation 

(6.5) bx2 - 2axy + bmy2 0 mod p 

is solvable, with (x, y) # (0, 0). The discriminant is 4c2e. Hence if N( E) = e = -1, 

then 2 1H(p), for p -' 2mb. 
Thus for some cases, e.g., where N( E) - +1, the only possible f for which 

H(f) - 1 muist come from primes in the special cases in Section 4 above. (We 
recall that if f I g, then H(f) I H(g)). Thus for m = 3, the olnlyf for which H(f) = 1 

are now seen to be f = 3t and f = 2 3t 
We next consider the sub-group of f, called 23p, all of whose elements have 

lnorms which are quadratic residues of p. Thus a,, is necessarily in p, while at 
is in Sp if and only if ( [t2 _ m]/p) = + 1. It is easily seen that the norms of repre- 
sentatives in at are not all residues, by results on successions of residues and non- 
residues. Thus 23p has only order (p -- (?n/p) ) /2, since it must then be of index 2. 
Now if we normalize the representative of at in (6.1) belonging to 23 to be plus 
or minus an element of norm 1, we can say that if e = 1, then e represents a perfect 
square in Q3, if and only if for some integers x and y 

(6.6) E (x + ym1'2)2 (mod p). 

But the condition for a perfect square in Q3 is precisely the condition that isE 
represents a perfect fourth power in 21,p, or 4 l H(p). Expanding (6.6), we dis- 
cover we mutst be able to solve simultaneouisly 
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4?ca _ x2 + my2 
(6.7) 4 (mod p). 

Hicb =2xy 

An elementary calculation reveals this system is solvable if and only if (with signs 
81, 82 = ?1), 

,x2 +my2-s1ca 
(6.8) 22 2 (mod p). 

- -my = s2c 

For this it is necessary and sufficient that 2c(sia + 82) and 2mc(sia - 82) be per- 
fect squares modulo p. With some manipulation, we find, if N( E) = e = +1 and 
p + 2mb, then a necessary and sufficient condition that 4 1 H(p) is that 

(6.9) (-l/p) = (m/p) - ([2a/c -2]/p) 

We can often simplify the result (6.9) to take the form 

(6.10) (-S/p) = (Q/p) = (Rlp), 

for smaller values of Q and R shown in the columns 10 and 11 of Table I with S = 1, 
except for m = 15 and 35, where S = 2. When e = -1, there are still many oc- 
currences of H(p) = 4 (the smallest such value is listed in column 11). 

7. Divisibility by 3. A more interesting case is r = 3. This can occur (for p + 6mb) 
only when 3 1 A/(p) or (-3m/p) = 1. We ask, when can we solve ce 
k(x + yi ) (mod p) or 

(a k[x3 + 3xy2m] (mod p), 
(7.1) tb = k[3z y + y3m] 

for xy * 0? Eliminating k, we see this leads to the solvability of X(x/y) 
=_ 0 mod p where X is a polynomial defining a root of a cubic field, 

(7.2) X(t) = bt3 - 3at2 + 3btm - am = 0. 

Hence 3 1 H(p) (for p + 6m) if and only if p is a splitting prime for the field R(t). 
In fact, p must split into three distinct prime ideals since (-3m/p) = 1, and the 
discriminant D3 of the cubic can be shown to differ from - 3m by a rational square. 
The reader is referred to' Hasse's work [6] for details on the method. 

Finding the field discriminant of R(t) is rather lengthy but since the methods 
are so well-known we can merely outline the steps. The module [1, bt, am/c] con- 
sists only of integers of R(t) and its discriminant is - 108mc4 by a direct calcula- 
tion. Since only perfect squares could be superfluous factors of the discriminant, 
we need examine the basis elements to see if r + sbt + tam/c can be divisible by 
2 (or 3) without r, s, and t being simultaneously divisible by 2 (or 3). We find 
the only possibilities are the following cases which we leave for the reader to verify: 

Casei. 3 m and3 Ib;then3 Ib and3 I(am/t) 
Case ii. 3 m and 9 a (or b); then 3 I bt (or 3 (am/t)) 
Case iii. 3 - mab and am =-?b (mod 9); then 3 l (bt + eje2am/t - e2) 

wheree1 = +1 = am, e2 = +1 = b (mod 3) 

Case iv. c = 2; then 2 1 bt, 4 1(bt + am/c). 
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These calculations were made partly on the basis of possible ideal factorizations 
of (2) and (3) and partly as a direct consequence of the following equation for 

(bt + am/t)e: 

-3b( 1 - )2 + 3(b2 - a2)(1 -n)A 

(7.3) + [a 3(6m + 2) + a2b(m' - 12mn + 3) 

- ab2(2m + 6m2) + b3(9mn2 - 1)] 0. 

The occurrences of cases (i-iii) are noted in column 7 of Table I. 
We finally obtain 

(7.4) d3f32 = - 108m/s2c2, 

where 

(s=9 if 3jm,3Jb, 

(7.5) )s=3 if 3 m, 9 ab, orif 3 tmab, am -ib (mod 9), 

s = 1 otherwise. 

We then consider the set of h(d3f32) primitive reduced quadratic forms of dis- 
criminant D3. Those which are perfect cubes under composition represent pre- 
cisely all primes p(+ 6m) for which 3 1 H(p). 

A supporting computation was made by Mr. Roy Lippmann on an IBM 650 
to calculate all primitive reduced forms from D3. The square-free kernel m3 is 
shown in Table I, together with h(D3) and the conductor f3. The h(D3) primitive 
forms (A, B, C) which are cubes under composition were most easily identified 
by finding some "convenient" small prime (p + 6m) represented by the form and 
checking H(p), (see [1]). The coefficients A and B of forms and representative 
primes p and H(p) are listed in Table III. 

Now in every case, it so happens that 3 1f h(d3f32), hence there are h(d3f32) /3 
forms which are perfect cubes. Also, the ambiguous forms are always perfect cubes, 
but in general they are not the complete set. The non-ambiguous forms, naturally, 
are written two at a time by means of 4+B. 

8. Irregular Primes. We finally note that there are malny odd primes p, for 
which, for some fixed i > 0, 

(8.1) H(p') = H(p) min (pnlI, pi). 

We call these primes irregular and we call i the index of irregularity. When p + 6nmb 
such cases are explained by some combinational curiosities much less transparent 
than those occurring in Section 3. They are listed because the occurrence of prime 
divisors of f in the relative class number is of some theoretical value. 

These values were found by scanning the outputs (5.2) as f ran over the odd 
primes p for cases where b= 0 (mod p). The 53 individual cases which emerged 
were tested by rerunning these cases, using f = p2. The values of b/f * 0 (mod f) 
indicated primes of index 1, while those where b/f- 0 while b/fp * 0 (mod f) 
indicated primes p of index 2. No odd primes of higher index emerged from the 
experiment. 
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9. Summary of Calculations. The problem ran some 40 hours and generated 
some 300 pages of tables, obviously too much to reproduce! We therefore attempt 
a qualitative r6sume. 

From the output, we would readily believe that when e = -1 there are in- 
finitely many odd primes for which H(p) = 1, while when e = 1 there are in- 
finely many primes for which H(p) = 2. Indeed, even in the case e = 1, we know 
(from Section 4) that if p I m and p + 6b then H(p) = 1. In either case, except for 
scattered irregular primes in Table IV, H(p) = H(p"). 

A frequency count is surprising in its uniformity. When e = -1, we examine 
the 167 odd primes < 1000 and find H(p) = 1 in 39-43 per cent of these primes 
as m varies, while when e = + 1 the corresponding case H(p) = 2 occurs for 
56-63 per cent of these primes as m varies. If we define P(m, n; x) as the proportion 
of primes < x for which H(p) = n (in reference to R(m"2)) we find a reasonably 
steady value for P(5, 1; x). For instance, P(5, 1; 500) = 42 per cent, P(5, 1; 
1000) = 41 per cent, P(5, 1; 2000) = 39 per cent, P(5, 1; 4000) = 37 per cent. 

Continuing with m = 5, H(p) (as far as we might imagine) "should" take all 
prime values but it seems to take large values "rather slowly." The earliest p for 
some larger primes are H(911) = 13, H(1087) = 17, H(3079) = 19, H(1103) = 
23. For p < 4400, H(p) takes no larger prime! Thus an "asymptotic" study of 
the values of H(p) can be expected to be astronomical in size (perhaps larger 
than for studies of classical prime number distributions). 

Table II is given to point out some relative class numbers which are small 
prime powers, H(p) -= 3 is in Table III, and H(p) - 2 or 4 comes from columns 
10 and 11 of Table I. Despite the uniformity of the earlier frequency count, some 
values of mn seem to be more "amenable" to given values of H(p) than others. 
This seeming paradox might again be a manifestation of the fact that "p < 1000" 
is a miniscule range of values! 

As far as congruence properties of H(p) are concerned, Sections 6 and 7 provide 
us with much more guidance. For example, by the uniform density of primes in 
linear congruence classes for a fixed modulus, when e = -1, H(p) O0 (mod 4) 
only one-third as often as H(p) * 0 (mod 4). 

In a similar manner, using known results on the distribution of primes repre- 
sented by quadratic forms [8], we can see that if k3 of the h(Dg) forms are perfect 
cubes, then k3/2h(D3) is the proportion of primes for which H(p) 0 (mod 3), 
at least by "Dirichlet density." Actual frequency counts show the proportion to 
be reassuringly close to %; (with k3 = h(D3)/3 in the cases treated here). 

The congruence properties H(p) 0 (mod 5), however, provide too few in- 
stances in the range p < 1000, to make a frequency count meaningful. 

The conditions on p which make H(p) 0_ (mod 4) when e = -1, are more 
provocative. The percentage of such p( <1000) varies from 4 per cent (when 
m = 37) to 12 per cent (when m = 89). There seems to be no simple explanation 
(e.g., in terms of linear or quadratic forms). As a matter of curiosity, when in = 5, 
H(p) 0 (mod 4) for 

p = 61, 89, 109, 149, 269, 389, 401, 521, 661, 701, 761, 769, 809, 821, 829; 

when mn = 37, this holds for 

p = 53, 101, 181, 293, 349, 397, 593; 



TABLE I 
Summary of Calculation 

Columns 1-5 are explained in Section 2, Columns 6-9 in Section 7, 
Columns 10-11 in Section 6. 

1 2 3 4 5 6 7 8 9 10 lit 

m a b e h(d) m3 f3 h(d3) h(d3f32) Q Ror p4 

(Series A: m* 1 (mod 4), c = 1, d = 4m, d3 = 4m3.) 
2 1 1 -1 1 -6 3 2 6 ... 41 
3 2 1 +1 1 -1 9 1 6 2 3 
6 5 2 +1 1 -2 9 1 6 2 -3 
7 8 3 +1 1 -21 3 4 12 -2 7 

10 3 1 -1 2 -30 3 4 12 ... 157 

11 10 3 +1 1 -44 3 4 12 2 11 
14 15 4 +1 1 -56 3 4 12 -2 7 
15 4 1 +1 2 -5 9 2 12 3* -5* 
19 170 39 +1 1 -57 3 4 24 2 19 
22 197 42 +1 1 -66 3 8 24 2 -11 

23 24 5 +1 1 -69 3 8 24 -2 23 
26 5 1 -1 2 -78 3 4 12 ... 37 
30 11 2 +1 2 -10 9 2 24 5 -6 
31 1,520 273 +1 1 -93 3 4 12 -2 31 
34 35 6 +1 2 -102 3 4 12 -2 17 

35 6 1 +1 2 -105 3 8 24 5* -7* 
38 37 6 +1 1 -114 3 8 24 2 -19 
39 25 4 +1 2 -13 9 2 24 3 -13 
42 13 2 +1 2 -14 9 4 24 6 -7 

(Series B: m 1 (mod 4), c = 2, d m, d3 = M3.) 

5 11 1 -1 1 -15 3 2 6 61 
13 3 1 -1 1 -39 3 4 12 ... 29 
17 8 2 -1 1 -51 3 2 6 ... 13 
21 5 1 +1 1 -7 9 1 12 3 -7 
29 5 1 -1 1 -87 1 (iii) 6 6 ... 13 

33 46 8 +1 1 -11 9 1 6 -3 11 
37 12 2 -1 1 -111 3 8 24 ... 53 
41 64 10 -1 1 -123 3 2 6 ... 5 
53 7 1 -1 1 -159 3 10 30 ... 17 
57 302 40 +1 1 -19 9 1 12 3 -19 

61 39 5 -1 1 -183 3 8 24 ... 59 
65 16 2 -1 2 -195 3 4 12 ... 29 
69 25 3 +1 1 -23 1 (i) 3 3 -3 23 
73 2,136 1 250 -1 1 -219 3 4 12 ... 37 
77 9 1 +1 1 -231 1 (ii) 12 12 7 -11 

85 9 1 -1 2 -255 1 (ii) 12 12 ... 101 
89 1,000 106 -1 1 -267 3 2 6 ... 73 
93 29 3 +1 1 -31 1 3 3 3 -31 
97 11,208 1,138 -1 1 -291 3 (i) 4 12 ... 53 

I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

* Here S = 2. (See Section 6). 
t When e = -1, Column 11 has the earliest prime P4 for which H(p4) = 4. 

(See Section 6). 
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TABLE II 
Some Special Values of p for Which n I H(p) 

The table gives the minimum odd prime p(<1000) for which H(p) = n, (or 
H(p) = 2n, if n is odd and e = N(e) = +1). If no such p occurs, the table lists 
Pr the earliest prime (<1000) for which H(p)/n (or H(p)/2n) gives the minimum 
quotient r. 

M | n = 8 16 32 9 27 5 25 7 11 

Series A 
2 137 353 ... 2692 ... 79 ... 643 199 
3* 313 193 ... 181 ... 71 ... ... ... 
6* 409 97 ... 89 9712 311 ... 743 109 
7* 71 751 127 179 271 131 ... 197 6174 

10 241 449 ... 271 ... 19 ... 419 131 

11* 97 881 449 719 ... 409 199 421 
14* 71 79 ... 251 ... 29 ... 97 ... 
15* 31 ... ... 163 487 61 ... 71 ... 
19* 73 ... . ... 991 269 31 ... 13 397 
22* 353 401 641 883 593 271 701 127 1312 

23* 41 47 ... 521 ... 59 ... 631 ... 
26 641 881 ... ... ... 139 ... 3372 . . . 

30* 23 383 ... 739 ... 439 349 211 
31* 7 193 ... 8837 . . . 19 449 13 
34* 23 9113 ... 163 ... 59 ... 83 4334 

35* 47 449 223 71 ... 89 ... 701 
38* 137 769 ... 37 701 431 ... 127 ... 
39* 673 79 ... 827 ... 151 ... 911 857 
42* 103 6737 . . . 809 431 491 ... 433 

Series B 
5 89 ... ... 919 ... 211 ... 307 967 

13 233 ... ... 827 ... 59 ... 211 109 
17 281 ... ... 127 ... 79 ... 
21* 199 337 ... ... ... 101 ... 433 263 
29 233 673 ... 971 ... 619 ... 6012 4616 

33* 71 47 ... 4332 379 139 ... 239 331 
37 ... ... ... 732 . . . 71 ... 167 ... 
41 7692 769 ... 307 ... 199 ... 491 5932 
53 9292 929 449 4334 . . . 379 ... 1132 659 
57* 487 127 ... 197 ... 271 ... 43 ... 

61 937 977 ... 271 487 59 ... 463 ... 
65 601 ... 353 467 431 211 ... ... 43 
69* 71 239 ... 307 ... 79 ... 97 ... 
73 857 ... ... 107 ... 379 ... 3332 67 
77* 127 113 ... ... .. 101 ... 71 ... 

85 .. . ... 71 ... 331 ... 139 947 
89 809 641 929 631 ... 59 ... 503 967 
93* 463 79 ... 379 81 13 251 ... 29 947 
97 1132 113 673 107 ... 151 463 ... 

(* Denotes values of m for which N(e) = 1). 
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TABLE III 

Quadratic Forms Which are Perfect Cubes 
These are the forms (A, B, C) of discriminant B2 - 4AC = d3 f32 which represent 

those primes p(+ 6m) for which 3 !H (p), where p is "conveniently" small. 
2 B 

m d3f32 A B p 1H(p) A B p H(p) 

Series A 
2 -216 1 0 79 3 2 0 29 6 
3 -324 1 0 97 12 2 2 41 6 
6 -648 1 0 163 6 2 0 83 12 
7 -756 1 0 193 12 7 0 139 6 

2 2 107 6 14 14 17 6 
10 -1080 1 0 271 9 2 0 137 6 

5 0 59 3 10 0 37 12 

11 -1188 1 0 313 24 11 0 71 6 
2 2 149 6 19 16 19 6 

14 -1512 1 0 379 42 2 0 191 24 
7 0 61 6 14 0 41 6 

15 -1620 1 0 409 12 5 0 101 6 
2 2 227 12 10 10 43 6 

19 -2052 1 0 577 36 19 0 103 6 
2 2 257 6 23 8 23 6 

22 -2376 1 0 619 6 2 0 347 12 
11 0 227 12 22 0 331 6 

7 ?t2 7 6 14 ?12 47 6 

23 -2484 1 0 877 6 23 0 131 6 
2 2 311 24 25 4 349 6 
5 ?4 5 6 10 ?6 67 6 

26 -2808 1 0 727 3 2 0 353 6 
13 0 67 3 26 0 53 6 

30 -3240 1 0 811 30 2 0 503 12 
5 0 167 12 10 0 241 60 

11 ?4 11 6 22 ?t4 37 6 
31 -3348 1 0 853 6 27 0 139 6 

2 2 419 30 29 4 29 6 
34 -3672 1 0 919 6 2 0 461 6 

17 0 71 24 27 0 61 6 

35 -3780 1 0 1009 12 5 0 269 6 
7 0 163 6 27 0 167 12 
2 2 557 6 31 8 31 6 

10 10 97 6 14 14 71 18 
38 -4104 1 0 1051 6 2 0 521 6 

19 0 73 24 27 0 179 36 
23 ?6 23 6 31 i22 31 6 

39 -4212 1 0 1069 12 13 0 337 
2 2 587 6 26 26 47 6 

1,7 2 17 6 31 ?t2 31 6 
42 -4536 1 0 1303 6 2 0 569 6 

7 0 337 84 141 0 137 6 
13) ?121 131 6 26 ?4-12 59 12 
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TABLE III-Continued 

m j d3 f32 A B p H(p) A B p H(p) 

Series B 
3 -135 1 1 139 3 5 5 47 3 

13 -351 1 1 367 3 10 11 0 79 3 
8 +1 11 3 

17 -459 1 1 127 9 11 i 5 11 3 
21 -567 1 1 571 6 7 7 109 12 

8 ?3 23 6 ... ... 
29 -87 1 1 103 3 3 3 41 6 

33 -891 1 1 223 6 11 1 1 23 1 2 
37 -999 1 1 1063 3 16 5 619 3 

2 ?1 131 3 4 ' 3 73 18 
8 45 89 6 ..I... ... I . 

41 -1107 1 1 277 12 17 7 71 3 
53 -1431 1 1 1447 3 20 1 3 239 3 

7 ?5 7 3 18 ?15 23 3 
10 ?3 43 3 8 ?-3 83 3 

57 -1539 1 1 397 36 19 19 139 6 
5 41 5 6 

61 -1647 1 1 1663 3 22 17 271 9 
18 ?3 23 3 8 ?7 531 6 
13 ?11 13 6 .. . ... 

65 -1750 1 1 439 3 23 1 9 23 3 
5 5 89 18 13 13 37 6 

69 -23 1 1 101 6 
73 -1971 1 1 499 3 25 23 791 3 

5 43 5 6 .. I. 
77 -231 1 1 331 6 3 3 891 18 

8 5 233 6 7 7 61 6 

1 21 85 -255 1 1 271 15 81 1 83121 
3 3 97 12 5 5 1311 3 

89 -2403 1 1 601 12 27 -27 83 3 
93 -31 1 1 47 6 
97 -26191 1 1 661 12 27 27 31 3 

23 ?7 23 3 

an1d when in = 89, this holds for 

p = 53, 73, 109, 157, 233, 257, 269, 449, 461, 509, 601, 613, 641, 733, 757, 809, 

821, 929, 937, 977. 

Curiously enough, when m = 37 all p( <1000) for wvhich H(p) =- 0 (mod 4) 
satisfy H(p) = 4; from Table II, this value of in seems most "resistant to variety" 
in the values of H(p). 
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TABLE IV 

Irregular (Odd) Primes < 1000 
For values of m in Table I. Primes of index 2 are marked with (*), unmarked 

primes are of index 1. (See Section 8.) 

m1 p H(p) m p H(p) 

Series A Series B 
2 13 2 13 241 2 
2 31 1 29 3* 1 
3 103 2 29 11 I 
6 3 1 33 3 I 1 
6 7 2 33 29 2 

10 191 5 33 37 4 
10 643 1 37 I 1 
15 3 1 37 89 6 
15 181 2 37 257 1 6 
19 9 2 41 29* 2 

22 4A. 4 41 53 2 
22 73 1 2 53 5 1 2 
23 7 2 57 59 2 
23 73;3 2 69 5 2 
31 157 2 69 17* 2 

34 37 1 2 73 5* 6 
34 547 I 26 73 I 1 
35 23 2 73 41 2 
38 5 2 85 3 1 
39 5 2 89 5* 2 

39 1 2 89 
39 37 2 89 13 2 
42 3 1 1 89 59 5 
42 5 r 2 93 13 2 
42 4:3 2 97 17 2 

42 71 2 

It is our hope that additional motivation might be suggested by these data 
before the n-ext electronic tour de force is attempted. 
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